Transcription in Archaea
نویسندگان
چکیده
منابع مشابه
Transcription Regulation in Archaea.
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymera...
متن کاملBasal and regulated transcription in Archaea.
The basal transcription machinery of Archaea is fundamentally related to the eucaryal RNA polymerase (RNAP) II apparatus. In addition to a 12-subunit RNAP, Archaea possess two general transcription factors, the activities of which are required for accurate and efficient in vitro transcription. These factors, TBP and TFB, are homologues of the eucaryal TATA-box binding protein and TFIIB respecti...
متن کاملTranscription in archaea: similarity to that in eucarya.
We present homologies between archaeal and eucaryal DNA-dependent RNA polymerase (RNAP) subunits and transcription factors. The sequences of the Sulfolobus acidocaldarius subunits D, E, and N and alignments with eucaryal homologs are presented here. The similarities between archaeal transcription factors and their eucaryal homologs TFIIB and TBP have been established in other laboratories. The ...
متن کاملThe Lrp Family of Transcription Regulators in Archaea
Archaea possess a eukaryotic-type basal transcription apparatus that is regulated by bacteria-like transcription regulators. A universal and abundant family of transcription regulators are the bacterial/archaeal Lrp-like regulators. The Lrp family is one of the best studied regulator families in archaea, illustrated by investigations of proteins from the archaeal model organisms: Sulfolobus, Py...
متن کاملGeneral transcription factor specified global gene regulation in archaea.
Cells responding to dramatic environmental changes or undergoing a developmental switch typically change the expression of numerous genes. In bacteria, sigma factors regulate much of this process, whereas in eukaryotes, four RNA polymerases and a multiplicity of generalized transcription factors (GTFs) are required. Here, by using a systems approach, we provide experimental evidence (including ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1999
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.96.15.8545